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1. INTRODUCTION

Financial engineering relies on an approximation — that the value of stocks, bonds. curren-
cies, etc.. follow either a continuous path or a binary tree. The methodology, going back to Black
and Scholes (1973), Harrison and Kreps (1979) and Harrison and Pliska (1981) — see, e.g., Duffie
(1996) for a contemporary overview — has been a powerful factor in the development of options
markets. And yet, the cracks in the theory show up in phenomena such as the volatility smile (see,

for example, Ch. 8.H (p. 180-185) of Duffie (1996)).

Most attempts at tackling the deviations between theory and reality have relied on creat-
ing additional flexibility in the continuous path model, in particular through stochastic volatility
models (including Hull and White (1987), Ball and Roma (1994) and Duan (1995)) and implied
volatility trees (Dupire (1994), Derman and Kari (1994), Rubinstein (1995)). Another line of
research has abandoned continuity (or trees) altogether, and instead focused on equilibrium con-
siderations and on approximate hedging (Merton (1976), Féllmer and Sodermann (1986), Aase
(1988), Follmer and Schweizer (1990), Schweizer (1990, 1991, 1993, 1994), Elliott and Féllmer
(1991), Colwell and Elliot (1993), Mercurio and Runggaldier (1993), to mention some).

There are advantages to both these approaches. Accepting discontinuity leads to a more
accurate model of prices, which typically move in multiples of fixed increments. It also permits a
more useful description of shocks such as stock market crashes, currency devaluations. and similar
occurrences. On the other hand, discontinuity carries with it an abandonment of the arbitrage
based theory of pricing. Even in a flexible continuous path model, such pricing can be used, if
need be by including coefficients representing the market price of suitable untraded securities. The

advantage of continuity is pragmatic, but no less compelling for that reason.

The purpose of this paper is to present an intermediate strategy, which can draw on the
strength of both the approaches described above. We shall suppose that the stock price moves in
Jumps of varying size, and then let the intensity of the jumps increase as their size decreases. The
stock price will then converge to a geometric Brownian motion, but it will also be possible to write

an asymptotic expansion for the price:

price = Black-Scholes price + 6'/2R + o(8'/?). (1.1)




Here, ¢ is a quantity which measures the distance between the actual stock price model and

geometric Brownian motion.

In this setup, R is the price of a residual security in a limiting security market, and it involves
observable constants and the market prices of a low dimensional set of untraded securities. To first
order, therefore, §1/2R captures the cost of discontinuity, but at the same time, it is obtainable

from arbitrage considerations.

It would, obviously, be more desirable to have the true price rather than an asymptotic
expansion for it. (1.1), however, can be seen as an analysis of the sensitivity of the Black-Scholes
price to small deviations from the standard model, and as such it should be a useful tool both
theoretically and practically. — Note that compared to the results in Willinger and Taqqu (1991).
Duffie and Protter (1992), Cutland, Kopp and Willinger (1993), and Amin and Khanna (1994).
(1.1) provides not only a limiting result, but also the first order remainder term. In this sense, we
are closer to Foster and Nelson (1996) and similar work by both these authors. The remainder

term is critical in the further analysis.

In addition to providing a more accurate modeling of stocks, discontinuity also permits a
realistic description of statistical uncertainty. This feature is not really available in the continuous
time model. Under continuity, the volatility is observed. Hence, if it is constant there can be no
statistical uncertainty (since the drift does not have an impact on the price). One can go through
various attempts to induce such uncertainty by making the volatility nonconstant, but this will
only recreate the problem at a meta level. Consider, for example, the case of endogenous variation.

It is highly desirable to model this variation through a stochastic volatility model, say,
do? = v(a?)dt + y(o?)dW,. (1.2)

The reason for this is that it is difficult to model mean reversion with a non random, time varying
o?, and mean reversion is widely believed to be a feature of the volatility process. The only possible
statistical uncertainty would then reside in v and 4. The latter, however, is observed on the domain
where o2 has actually varied (and is completely unknown otherwise), and v as such does not affect
the price of options, as it has to be modified by the market price of risk in 0?. Also, v is practically

observable in the long run (if one incorporates information on options prices; see Renault and




Touzi (1996)). One can make v and 7 time varying, but then the question of incorporating mean

reversion comes up again. And so on.

One can also model ¢? as a function of §, or in various other ways. but as far as the author
is aware, there is no known way of escaping the problem we have described in the framework of
the continuous path model. One can get around it by assuming that the volatility is observed by
market participants but not by econometricians (Renault (1995)), but this is not a particularly
satisfying solution. One can also adopt the approach of Gottlieb and Kalay (1985), Ball (1988), and
Kleive (1993) of thinking of stock prices as rounded or truncated values of a continuous process,

but again this raises the question of whether stocks can be hedged continuously or not.

This is not to say that the problem of inference in models for the behavior of financial instru-
ments is not a difficult one. A substantial literarture exists, see, e.g., Bollerslev, Chou and Kroner
(1992) for an overview of ARCH and GARCH models, and Dachuna-Castelle and Florens-Zmirou
(1986), Bibby and Sgrensen (1994, 1995), Danielsson (1994), Hansen and Scheinkman (1995), Ait-
Sahalia (1996), Kessler and Sgrensen (1995), Renault (1995), Foster and Nelson (1996), Gallant
(1996), Hansen, Scheinkman, and Touzi (1996), Pastorello (1996) and Renault and Touzi (1996)
for a selection of important recent contributions to inference in stochastic differential equations
(SDEs)). It is just that there is little integration between the theory of inference and the theory
of pricing.

Arguably, statistical uncertainty is not a problem — one can just use implied quantities.
Things are, however, not quite so simple in the presence of many unknowns, as we shall see in

Section 3. First, however, we describe the model and derive the expansion.

2. ASYMPTOTIC ANALYSIS

2.1. The Model

We suppose that log S, is a pure jump process whose jumps have intensity A;, and that
the jump at time ¢ has (random) size Z;. This can formally be carried out by letting log S; be
the integral of the Z; process with respect to the random measure that has intensity A (see, e.g.,

Ch. IL1.d (p. 71-74) of Jacod and Shiryaev (1987)). The asymptotics are then implemented by




letting the intensity go to infinity while the jump size goes to zero. To be precise, let §; = 5¢ be
indexed by a § which tends to zero, and suppose that the first four cumulant variations of log §¢
(see Section 6.1 (p. 30-32) of Mykland (1994)) exist and have the form fot psds = prt + op(1),
fot o2ds, 6'/%kst + 0,(6'/2) and k4t + 0p(6). We also assume that E sup(Alog S;)* = o(§), which
in particular implies that higher order optional variations of log S; are of order 0p(6).

The conditions assure that log $° converges to a Brownian motion with drift, and the price

of an option will be shown to be on the form (1.1).

Before finding the price, however, we shall investigate how to model o?.

2.2. Volatility Structure

It will be shown is Section 2.3 that the quantity R in (1.1) is the price of a derivative security
in the limiting probability measure obtained when § goes to zero. In order to obtain a meaningful
expression for R, this limiting security market must have an information structure which is sensible
for our purposes. This imposes requirements on the volatility structure.

First of all, o7 cannot follow (1.2), since that would lead it to be observable in the limit. In

fact, if o} is the long run average volatility, one needs 02 — 0} = 0,(6'/?) to avoid this problem,

because
t
[log S,log S); — 0¥t = / (02 = o})du + 0,(6Y%), (2.1)
0

so otherwise, o would be observable in the limit. We shall therefore suppose that

0,2 = 0’% + 61/21]t(0) + op(ﬁl/z). (2.2)

For similar reasons. we let A6~! be the long run average intensity process. It is natural to suppose

that

Ae =671 + 87Vt 1 0,(61/2). (2.3)

(One could also work with the case where A, /8 tends to zero or infinity, but this is less interesting

as one factor will then dominate).

To accomplish (2.2)-(2.3), one can suppose that

d(0F,60)" = v(0?,60)dt + §1/2(a2, 6)¢)dW;. (2.4)
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e = (77,(0)_. ng'\))* then takes the form
dny = v'ndt + ydW;, (2.5)

where v' = V/(0},A1) and ¥ = y(0},)L), and where it is assumed that v(o?,AL) = 0. Since
correlation between the two components of the Brownian motion W can be. moved into the vy, we
shall suppose these components to be independent standard Brownian motions. Note that (m¢)
is mean reverting if det(y) # 0 (at (07,AL)) and v/ is negative definite (in the sense that the

eigenvalues A of v/ satisfy Re(A) < 0).

The principal auxiliary processes in our system are then the observed standardized square

variation

& = 67*([log $,log §]; — o}t) (2.6)

and the observed standardized activity level
nd = 61/2(# jumps from 0 to t — 6~ AL t) (2.7)

These quantities are ‘observed’ on the principle that to first approximation, long run quantities

like pz, o} and Ay are observable.

Set
2
k 2
M= [’“4 - (&) "L} . (2.8)
o? AL

One then gets the limiting behavior of our observables.

THEOREM 1. Assume the conditions of Section 2.1. Also assume (2.4), that v is continu-
ous and that its eigenvalues are bounded away from zero and infinity, and that v is continuously
differentiable. Then M is nonnegative definite, and (2.2)-(2.3) holds with respect to the supre-
mum distance and with n given by (2.5). Furthermore, (S%, &5 né, W) converge jointly in law to

(S,&,n, W), where

2
dS, = (uL + %é) Sydt + 01.5:dB,, (2.9)

~ k
& =&+ — B, (2.10)
gL




and

_ ¢
(E1,m0)" = / nudu + M2V, (2.11)
0

where M/? is any symmetric square root of M, V; = (Vt(l). VY« and (B, v, Vt(z), wb, w)
is a standard Brownian motion. The convergence in law is in the space of cadlig functions on [0,T]

with respect to the supremum distance.

PROOF. See the Appendix.

2.3. The Price of Options

Suppose we wish to hedge a European option which expires at time 7', and for simplicity
assume that the risk free interest interest rate r is constant. If C(S,t,0)is the Black-Scholes price.

a natural hedging strategy is to use a “delta” of the form C'S(Sf_,t,&f_). Set
t .
XE = C(So.0.00) + [ Co(Si,u,65)a85", (2.12)
0

where S8 = =53, If we let X $ = e™ X}, then by numeraire invariance, there is a self-financing

strategy for X4, the price of which is C(So,0,0y).
We wish to evaluate the residual exposure to risk after approximately hedging C (5%, T) with
X4. Set
RS = 671/2 (c*(sf,t,aL) - ‘(f) : (2.13)
where C* = e™"C. To calculate the residual price R in (1.1), we find the limit R; of Rf , and from
this,

R=E*(Rr| %), (2.14)

where P* is a risk neutral probability to be discussed (cf. Harrison and Kreps (1979)).

Before we proceed any further, note that R is independent of hedging strategy 4?9, since the

price of X% is independent of this choice. For the purpose of evaluating R, therefore, we shall.

without loss of generality, set

& =oyp. (2.15)




We shall use C(S,t) = C(S,t,01). This does not mean, however, that the level of uncertainty
about oy does not have an impact on the price R, as we shall see in the following. First, however,

the limit result.

THEOREM 2. Assume the conditions of Theorem 1, and also that Csss(S,t) exists and is
continuous, uniformly in t, for § € A, where R — A has arbitrarily small Lebesgue measure. Then,

(R?) converges in law, jointly with and in the same topology as the processes in Theorem 1, to
t .
Ro=} [ SiCas(Suude,

—ka/ f(Susu (2.16)

where

£(8,u) = 352C5(S, u) + 5°Css(S, u). (2.17)

Note that the conditions of Theorem 2 are trivially satisfied for call and put options.

Returning now to the price of the residual, note that

R = 3‘k3T {3 ( ﬂLa_ ) 50055(50, 0) + 586555(50,0)} + R (2.18)
L
where
T . -
B = ([ si650(sm 0| 7). (2.19)
This is because
o’ . " .
(SPWC (St,1) | .7-'0) SOWC (So,0), (2.20)
and because, by (2.10),
ks —
& =& +— (Bf - 'ULGL 4 t) , (2.21)

where B* is a Brownian motion under P*.

To find R', we need the value process of Et In the most general form, suppose that v; and

w; are the (two-dimensional) market prices of V; and W, respectively, so that V; — v; and W, —




are P*-martingales. It is then easy to see that

T .
R' = 3E ( /0 §2C3s(Surw) (7 + (1,0)MY?v, ) du | f0> , (2.22)

where 7; is the solution of

i = V'Tpdt + ywdt
(2.23)
To = To.

A substantial simplification is obtained by assuming either that (v;) and (w;) are independent of

($t), or that they follow a linear differential equation
d(’l)t, 'U)t)‘ = Ao(t)dt + Al(t)(vt, wt)‘dt 4 Az(t)dZt, (2.24)

where the A’s are nonrandom and where Z; can have B, as one component, with the other com-

ponents independent of (B;). In this case, it is straightforward to see that
R = 183Cs5(80,0)E*(E7 | Fo). (2.25)

In this case, since

C3(5.t,0) = (T - 1)C35(S, t,7)S%, (2.26)

one can alternatively write (1.1) as

price = C(S0,0,0%) + 61/2%k3T535555(50,0,aL) + o(81/?), (2.27)
where
ol =0t + 87 (ks (1-ELT) 4 1 (ET | ]-'0> : (2.28)
2 0’% T

Though the given solution features skewness (as in k3) more prominently than kurtosis, the latter

is present through k4 in the matrix }f (in (2.8)). If one were to go to a second order expansion,

k4 would also be present in other ways.




3. ESTIMATION

3.1. Implied Quantities

Three cases can occur:

i) There are exchange traded options, and one wishes to price an option with the same maturity

as an exchange traded one.

ii) There are exchange traded options, and one wishes to price an option with a different maturity

than the exchange traded ones.

iii) There are no exchange traded options on the security §.

Reality, obviously, is more complex; the exchange traded options could be American. or one
might wish to price non European options. For simplicity, however, we continue to concentrate on

European options.

Case (i) is the simplest — one can find E*(£7 | Fo) by regression of the exchange traded
options. Or one can use (2.27) to find o}, for each strike price after correcting for the second term
on the r.hs. of (2.27). If the approximation is good, this yields a fairly flat curve for o), as a
function of the strike price. One should not expect a perfect fit, for there can be error terms of
order O(6). How to carry out the regression or the averaging of the o4’s (scale? weights?) is an
interesting question, similar to issues already debated in connection with implied volatilities. We

shall, however, not go into this issue here.

Case (iii) means that one has no data with which to determine the relevant market prices
of risk. In this case, one’s best bet would probably be to use considerations along the lines of

Schweizer (1992) and Pham and Touzi (1996).

Case (ii) is the most interesting one from our perspective. One has observations (or estimates)
of E*(&1 | Fo) for a couple of expiration dates T, and one wishes to interpolate between them.

There are two strategies:

¢ using implied quantities only, or

* using a combination of statistical estimates and implied quantities.
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One can also draw on equilibrium considerations, but we shall not consider this angle here.

Relying only on implied quantities is at best unwise, and often impossible. Even in the
benign case where the A4;’s in (2.24) are independent of ¢, and hence approximately observed from

long run data, one gets that

E*(fT l ]:0) = .f(7707v07 wo, T) (3.1)

for some function f. Since each of ng, vo and wy are two dimensional and unobserved, f is a

function of three to six unknowns, depending on the matrices specifying the system.

This means that one needs three to six different option expiration dates to infer the quantities
needed. (Different strike prices for the same maturity do not give additional information for the
model). Many options do not even have that many maturities. Even if they do, this is a dangerous
reliance on the validity of the model. It would be safer to use additional observation points T to

assess the correctness of the predictions of the model.

For this reason, we shall in the following take a statistical approach to reducing the number

of implied quantities needed.

3.2. Uncertainty Equilibrium

Our limiting system consist of observed processes S. £ and n, and unobserved processes 7
and V. It seems natural to assume that one’s uncertainty is in equilibrium, in the sense that for
all ¢,

Ir: =T, (3.2)

where T'; is the posterior covariance matrix for 7; given the data up to ¢. Alternatively, one could

assume that

posterior c.d.f. of n; at t = F(z — 7)), (3.3)

where F' is fixed and where 7, is the (vector) posterior. The reason why we propose this is that
one is unlikely to systematically gain or lose information about the unobserved state variables over
time. In other words. an investor will typically not know more about the current volatility on
March 22 than on January 7. One could, obviously, model I' or F as mean reverting processes.

We avoid this here in order to keep the model as simple as possible.
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Uncertainty equilibrium has implications for what prior and posterior distributions must look

like.

THEOREM 3. Assume the conditions of Theorem 1. Also suppose that v/ is negative definite

and that M is positive definite. Then the equation
TM™'T — T - T(¥)* - v9* = 0, (3.4)

has a unique symmetric positive definite solution. Furthermore the following statements are equiv-
alent:

(i) (3.2), and the distribution on 7 given the data at time 0 is Gaussian: and

(ii) (3.3), and F is absolutely continuous with full support on RZ.

Under either of these equivalent assumptions, the covariance matriz is the symmetric positive def-

inite solution of (8.4). Also, the conditional expectations satisfy

diy = Vidt + TM~Ud(&, )" — 7edt). (3.5)

PRrOOF: See the Appendix. Note that a reasonably explicit solution to (3.4) is constructed

in the proof.

In other words, uncertainty equilibrium imposes the prior variance. and, if one assumes (3.6),
the entire prior distribution. Under these circumstances, Bayesian inference would appear to be a

reasonable choice for characterizing the available information.

In the above, note that since py, o and k3 are long run quantities which are assumed to be
observed, and é is an observed process. It is possible to take of = o}, but we then suppose the

volatility to be observed. Otherwise, the assumption of uncertainty equilibrium would be violated.

Now set
R ~ x t
Vo= M~1/2 ((@,nt) - / mdu). (3.6)
0

Since 7 is a conditional expectation given the data, it follows that Viisa martingale in the filtration

generated by the observables. Since the quadratic variation structure of (B, V) is the same as for
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(B,V), Levy’s Theorem (see, e.g., Theorem I1.4.4 (p. 102) of Jacod and Shiryaev (1987)) yields

that (B, V) is a standard Wiener process with respect to the observable filtration.

It follows from Theorem 3 that
diy = v'fedt + TM 24V, (3.7)

Hence, the observed system is characterized by (2.9)—(2.10), (3.7), and

~ t ~
& me) = / fadu + MYV, (3.8)
0

3.3. The Effect of Uncertainty on Prices

Formula (2.19) continues to hold, but we now have a new observed Doob-Meyer decompo-
sition for &: the one given by (3.8). The market now only has two Brownian motions rather than

four, and if one takes dV; — o;dt to be a martingale P*, one gets that (2.22) remains valid with
v = D, (3-9)

but 7; now is the solution of
df, = V'Tdt + TM ™Y ?5,dt
(3.10)
o = To.
In other words yw; gets replaced by T M~%/24,, and 59 by 7.

If we specialize to the case (2.25), and assume that the market price 9, follows a mean

reverting process with constant coefficients, then

E(&r | Fo) = f (70, %0, T') (3.11)

where 7 is observed and % still needs to be inferred from traded options. This is only a two-

dimensional quantity, however, so only two expiration dates are needed. Note that F now represents

the observed filtration.

For an explicit expression for f, suppose that

By = B, + By, (3.12)
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where 9y, is the long run value of ;. Also assume that 9; follows a mean reverting process

db, = Aiydt + AodZ,. (3.13)
Then
(B0, B0, 8) = (1,0)(v') " o
t
+(1,0)E* ((V')-l / e/ =T ~1/255ds
0
t t
—(u')'l/ I‘M‘l/zz‘;sds+/ M1/2ﬁ3d3|.7-'0), (3.14)
0 0
and so

f(f0, Do, t)
= (1,0)(v')" e’ 1g
+(1,0) [(y’)-2(e"’t —Vt— [)TM~V2 - M1/2t] o

+(1,0) [ + (M1/2 - (V')-‘rM-W) A1 (eAt r)] (%0 — or.) (3.15)
where ; is the solution of
VQ — QA = (V)TITM V264 4 ()~ letT M —1/2 (3.16)

This jolly little expression is, of course, more suitable for software than for human consumption,
but the point is that all the quantities in (3.15), except for 7y and @9, are practically observable
in the long run. 7 is observed, and one only needs, therefore, two implied quantities, namely the
two components of 9. This will use two expiration dates to infer the relevant quantities. If there

are more dates available, one can use regression, and one can also do model checking.

How is 7)o computed? For the purpose of our limiting argument, any predictor A8 which
converges in probability to 7 as § tends to zero will do. Further fine tuning, as in Florens-Zmirou
(1993), Chesney, Elliot, Madan and Yang (1993) and Pastorello (1996), is obviously desirable in

practice. though we shall not pursue this issue here.
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4. CONCLUSION

We have seen in the above that asymptotic methods can be effective in studying incomplete
markets. Also, it is apparent that it is undesirable to rely on implied quantities only, and that one
needs to also use historical data to extract information about unobserved quantities. The effect of

estimation is incorporated into the options price in a natural manner.

The specific model and the specific type of asymptotics used is by no means meant to be
anything more than a test case and an example. There is room for substantial exploration into

how one can best implement the methodology advocated here.
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APPENDIX

PROOF OF THEOREM 1. Write
t
log 5¢ = log So +/ pudu + L7
0

t
g = 5712 / (0% — o2 )du + L
0
and

t
nd = 51/2/0 Ay = 67 1A)du + LT

L = (L5, L% L") is then a martingale with predictable covariation matrix given by

r S rsS
(LS, LS),
(L,L); = | 6~V*(LS, L5 L%), 6 YLS,L5 L5 LS),
| 812 fg Usds (L3, L5); 6f0t Asds
-Git kst 0

= | kst kqt oft| 4+ o0p(1) (A.1)
| 0 g%t At

Since Esup(ALY)* = o(6), and since L and W have zero covariation, it follows from Theo-
rem VIIL.3.12 (p. 432-433) in Jacod and Shiryaev (1987) that (L, W) converges in law to a Brownian
motion, with L independent of W and with covariance matrix given as the limit in (A.1). The
result then follows since [ §7/2(02 — 0%)ds and [ 6/2(\, — §=1)\1)ds converge in probability to

the integrals of the respective limits, by the uniformity in (2.2)-(2.3). Q.E.D.

Proor or THEOREM 2. By Ito’s Lemma (see, e.g., Theorem 1.4.57 (p. 57) of Jacod and

Shiryaev (1987)),

6Y2dRE = AC™(SP,1) - C3(SE_, 1)AS?
1Css(SE_,1)(S8_) 2okt

AS$

= AC*(Sfat) - Cﬂ)gS(sf—’t) St—

- % CfogS.logS(S?—’t) - Cﬁ)gS(Sf—at) U%dtv (A2)
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where we have used that C’;‘ + rC";S + %é’gsS 262 = 0. The dependence on o} is suppressed in the

notation. By Taylor expansion,

t ..
.M=%L<§4ﬁﬂw@i

t
+_r“/ﬂﬁmm%ﬁmwM%ﬁh (A-3)
0

where |Z{ — S¢| < |AS{|. Z is measurable and cadidg by construction, and by Lemma VI.3.31
(p. 316) of Jacod and Shiryaev (1987) and (our) Theorem 1, Z° converges to S in law. By the con-
tinuity assumption of the current theorem, f(Z?%,.) converges to f(S.,-) in law (Remark VI.3.8
(p. 312) in Jacod and Shiryaev (1987)). One can then use Theorem VI.3.21 (i) (p. 314) in
the same work together with uniform integrability to conclude that the second term on the
r.h.s. of (A.3) converges as specified to the second term on the r.h.s. of (2.16). This is because
§~Y?[log 5%, 10g §%,log 5, = [£%,log § 5);, the convergence properties of which follow from Corol-
lary VI.6.7 (p. 342) in Jacod and Shiryaev, in view of (our) Theorem 1.

The first term on the r.h.s. of (A.3) is handled in analogy to the proof of Theorem 1. Q.E.D.

ProOOF OF THEOREM 3—SOLUTION OF EQUATION (3.4). Since the solution is obvious if

V' is symmetric, we shall exclude this case in the following.

Set T' = M~Y2TM~Y2 5 = M~V M~1/2 and ¥ = M'%y. The problem is equivalent,

obviously, to finding a unique symmetric nonnegative definite (u.s.n.d.) solution to
T-T-7) =) +57". (A.4)

If one writes the right hand side of (A.4) as VLV* where L is diagonal and V is orthonormal, one
can further set I' = V*TV and # = V*¥'V, and the problem then reduces to finding a u.s.n.d.

solution to

(T -7\ T -9 =L. (A.5)

The set of [ satisfying (A.5) with no further constraint is given by

I=LY%U +i (A.6)
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where U can be any orthonormal matrix.

Since ' must be symmetric, the two off diagonal elements of L/2U + &' must be the same,

ble]

f;/zuzl - 51/21112 = 17{2 - 1751- (A7)

Also, since U is orthogonal,

ur1ug1 + uguy = 0. (A.8)
Solving these two equations yield that

Ul = ’U,22(l7{2 — 1721)/det

uy3 = —uyy (g — Vo1)/det, (A.9)

where

det = fi/z ur + E;/2u22 | (A.10)

(we discuss below why det # 0). u}; + u?, = 1 is equivalent to

Ry Y ]
u%l (1 + (Ulzdetlzl?l) ) = 1, (A.ll)
and, similarly, u3; + u3, = 1 to
5 ol )2
ul, (1 + (ﬁzdet#) = 1. (A.12)

Hence uy; = +uz;. The minus sign is ruled out. however, since otherwise (by (A.9)) U would be
symmetric and hence (since orthonormal) the identity. This could mean that 7}, = #};, whence v/

would be symmetric, which we have previously ruled out.

A solution exists, therefore, provided (A.11) and det # 0 (if det = 0, there is no solution,

since the case v’ symmetric has been ruled out). This is equivalent to

|5y — | < 6377 + 22/, (A.13)

This condition is satisfied since

(P12 — 73)? < x(V'0"™)
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< tr(L)

< (& 4 677, (A.14)

There are now two possible solutions of our system. corresponding to positive or negative

sign of uy;. However,

tr(T) = up (€72 + €47 + 02(8") (A.15)

which is negative if uy; < 0. This contradicts the requirement that I' be positive definite. Hence.

the only possible solution for U is

_(-aty
U= ( o (e (A.16)
where .
_ 1712 — 1731 g
a = W (A-ll)

This solution exists (i.e., || < 1), T satisfies (3.4), and is symmetric. It is also the only solution
which may be positive definite. To show that this requirement is indeed satisfied, with T = QAQ™.
and note that A can be chosen so that T is positive definite, and hence this must be a property of

the solution we have described. Q.E.D.

PROOF OF THE REMAINDER OF THEOREM 3. Provided (i) holds, it follows from Theo-
rem 12.7 (p. 33) of Lipster and Shiryaev (1978) that I' is the solution of (3.4). Equation (3.5) is a

consequence of the same result.

(i) = (ii) follows from the above and from Theorem 12.6 (p. 31) of Lipster and Shiryaev
(1978).

(ii) = (i): Let P be the probability distribution, and let Q be one in (i). By our assumptions.
dP/dQ exists and is Fo-measurable. Since v’ is negative definite, (m¢) is ergodic, and so 7 is

asymptotically independent of F, and hence dP/dQ. It follows that, for bounded continuous g,

E (g(m) | 7o)

=EQ( s | 7)

2 (&)
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= Eq (g(n) | F7%) + 05(1).

Hence, by (ii), we must have @ = P, and (i) follows. Q.E.D.
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